题目内容
【题目】如图,BD是等边三角形ABC的角平分线,E是BC延长线上的一点,且CE=CD,DF=BC,垂足为F.BF与EF相等吗?为什么?
【答案】BF与EF相等,证明见解析.
【解析】
根据等边三角形的性质得∠ABC=∠ACB=60°,再由BD是角平分线得∠CBD=30°,接着根据等腰三角形的性质,由CD=CE得到∠CDE=∠E,利用三角形外角性质可计算出∠E=30°,所以∠DBE=∠E,于是可判断△DBE为等腰三角形,然后根据等腰三角形的性质可得BF=EF.
BF与EF相等。理由如下:
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵BD是等边三角形ABC的角平分线,
∴∠CBD=30°,
∵CD=CE,
∴∠CDE=∠E,
而∠BCD=∠CDE+∠E=60°,
∴∠E=30°,
∴∠DBE=∠E,
∴△DBE为等腰三角形,
∵DF⊥BC,
∴BF=EF.
练习册系列答案
相关题目