题目内容

【题目】如图,直线l1y2x+1与直线l2ymx+4相交于点P1b).

1)求bm的值;

2)垂直于x轴的直线与直线l1l2,分别交于点CD,垂足为点E,设点E的坐标为(a0)若线段CD长为2,求a的值.

【答案】(1)b3m=﹣1;(2

【解析】

1)由点P1b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;

2)由点CD的横坐标,即可得出点CD的纵坐标,结合CD2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.

1)∵点P1b)在直线l1y2x+1上,

b2×1+13

∵点P13)在直线l2ymx+4上,

3m+4

m=﹣1

2)当xa时,yC2a+1

xa时,yD4a

CD2

|2a+1﹣(4a|2

解得:aa

a的值为

练习册系列答案
相关题目

【题目】某旅行社推出一条成本价位500/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800/人~1200/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

【答案】(1)取值范围为1100元/人~1200元/人之间;(2)50000;(3)x=900时,w最大=160000

【解析】试题分析:(1)根据题意列不等式求解可;

(2)根据报价减去成本可得到函数的解析式,根据一次函数的图像求解即可;

(3)根据利润等于人次乘以价格即可得到函数的解析式,然后根据二次函数的最值求解即可.

试题解析(1)∵由题意得时,即

∴解得

即要将该旅游线路每月游客人数控制在200人以内,该旅游线路报价的取值范围为1100元/人~1200元/人之间;

(2),∴

,∴当时,z最低,即

(3)利润

时,.

型】解答
束】
23

【题目】已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点CCEAB于点E,点FAB上一点,且EF=EB,连接DF

1)求证:CD=CF

2)连接DF,交AC于点G,求证:DGCADC

3)若点H为线段DG上一点,连接AH,若∠ADC=2HAGAD=3DC=2,求的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网