题目内容
【题目】如图,已知△ABC中,∠ACB=90°,AC=15,BC=20.动点P在线段CB上,以1cm/s的速度从点C向B运动,连接AP,作CE⊥AB分别交AP、AB于点F、E,过点P作PD⊥AP交AB于点D.
(1)线段CE= ;
(2)若t=5时,求证:△BPD≌△ACF;
(3)t为何值时,△PDB是等腰三角形;
(4)求D点经过的路径长.
【答案】(1)12;(2)答案见解析;(3);(4)12.5
【解析】试题分析:(1)由勾股定理求出AB的长,再由面积法即可得到结论;
(2)用ASA证明即可;
(3)作DG⊥BC,垂足为G,由(2)得∠CAP=∠GPD,可得△ACP∽△PGD.分三种情况讨论:①DP=DB,②PD=PB,③PB=DB;
(4)当AP平分∠CAB时,D′B最长,点CB上运动时,D在D′B之间往返运动.故点D运动路径的长=2BD′,求出BD′的长即可.
试题解析:解:(1)∵∠ACB=90°,AC=15,BC=20,∴AB==25.∵ABCE=ACBC,,∴25CE=15×20,解得:CE=12.
(2)∵ t=5,∴BF=15,∴AC=BF
∵∠APC+∠BPD=∠APC+∠CAP=90° ,∴∠BPD=∠CAP.
∵∠ACE+∠BCE=∠BCE+∠B=90° ,∴∠ACE=∠B,∴△BPD≌△ACF.
(3)作DG⊥BC,垂足为G,由(2)得:∠CAP=∠GPD.∵∠ACP=∠PGD=90°,∴△ACP∽△PGD.分三种情况讨论:
①若DP=DB,则∠GPD=∠B ∴tan∠GPD=tan∠B=,∴ ,∴;
②若PD=PB,则∠PDB=∠B.∵△ACP∽△PGD,∴∠APC=∠PDG.∵∠PDC>∠B,∴∠PDG>∠B=∠PDB,则点G在PB的延长线上,矛盾,故PD=PB不成立;
③若PB=DB,则BD=20-t.∵DG∥AC,∴DG:DB=AC:AB,GB:DB=CB:AB,∴DG:(20-t)=15:25,GB:(20-t)=20:25,解得:DG=,GB=,∴PG=PB-GB=(20-t)- =.∵△ACP∽△PGD,∴AC:CP=PG:DG,∴15:t=
综上所述:t=.
(4)方法一:当AP平分∠CAB时,D′B最长,点CB上运动时,D在D′B之间往返运动.故点D运动路径的长=2BD′.
∵AP平分∠CAB,∴AC:CP=AB:PB,∴15:CP=25:(20-CP),解得:CP=7.5.∵DG∥AC,∴,设DG=3x,则BG=4x,BD=5x.∵△D′PG∽△PAG,∴D′G:PG=CP:AC=1:2,∴PG=6x,∴6x+4x=PB=20-7.5,解得:x=1.25.∴2 BD′=2×1.25×5=12.5.
方法二:P点是在CB上运动的,而∠APD是直角,∴P可以看作是斜边AB上以AD为直径的圆O与线段CB的交点,当CB与⊙O相切的时候,此时的D是运动到最远的时候.设半径为OA=OP=r,则OB=25-r.∵OP∥AC,∴OP:AC=OB:AB,∴,r=,∴BD=25-=,∴运动路程为2BD==12.5.