题目内容
【题目】如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′ 恰好落在CD上,若∠BAD=110°,则∠ACB的度数为( )
A.40°B.35°C.60°D.70°
【答案】B
【解析】
连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE= ∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°-∠BAD.
解:如图,连接AB',BB',过A作AE⊥CD于E,
∵点B关于AC的对称点B'恰好落在CD上,
∴AC垂直平分BB',
∴AB=AB',
∴∠BAC=∠B'AC,
∵AB=AD,
∴AD=AB',
又∵AE⊥CD,
∴∠DAE=∠B'AE,
∴∠CAE=∠BAD=55°,
又∵∠AEC=90°,
∴∠ACB=∠ACB'=35°,
故选:B.
练习册系列答案
相关题目
【题目】如图1,点O是矩形ABCD的中心(对角线的交点),AB=4cm,AD=6cm.点M是边AB上的一动点,过点O作ON⊥OM,交BC于点N,设AM=x,ON=y,今天我们将根据学习函数的经验,研究函数值y随自变量x的变化而变化的规律.
下面是某同学做的一部分研究结果,请你一起参与解答:
(1)自变量x的取值范围是______;
(2)通过计算,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 2.40 | 2.24 | 2.11 | 2.03 | __ | __ | 2.11 | 2.24 | 2.40 |
请你补全表格(说明:补全表格时相关数值保留两位小数,参考数据:≈3.04,≈6.09)
(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象.
(4)根据图象,请写出该函数的一条性质.