题目内容

【题目】在每个小正方形的边长为1的网格中,等腰直角三角形ACB与ECD的顶点都在网格点上,点N、M分别为线段AB、DE上的动点,且BN=EM. (Ⅰ)如图①,当BN= 时,计算CN+CM的值等于
(Ⅱ)当CN+CM取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段CN和CM,并简要说明点M和点N的位置是如何找到的(不要求证明).

【答案】(1)当BN=EM= 时,点N和点M在格点上, ∴CN+CM= + = +
⑵如图所示,取格点P、Q,使得PB=CE,PB⊥BC,QE=CB,QE⊥AC,
连接CP交AB于N,连接CQ交DE于M,则线段CN和CM即为所求.

理由如下:根据等腰直角三角形ACB与ECD的顶点都在网格点上,可得∠PBN=∠CEM=45°,∠CBN=∠QEM=45°,而BN=EM,
故△BPN≌△ECM,△CBN≌△QEM,
∴PN=CM,CN=QM,
∴当P,N,C三点共线时,CM+CN=PN+CN=PC(最短),
当Q,M,C三点共线时,CM+CN=CM+MQ=QC(最短),
∴点M和点N的位置符合题意
【解析】(1)根据当BN=EM= 时,点N和点M在格点上,运用勾股定理进行计算即可得到CN+CM的值;(2)取格点P、Q,使得PB=CE,PB⊥BC,QE=CB,QE⊥AC,连接CP交AB于N,连接CQ交DE于M,则根据全等三角形的对应边相等,以及两点之间线段最短,可得线段CN和CM即为所求.
【考点精析】本题主要考查了勾股定理的概念的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网