题目内容

【题目】解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁. (Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至AC′的位置时,AC′的长为 m;
(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).

【答案】(Ⅰ)∵点C是AB的中点, ∴A'C'= AB=23.5m.
(Ⅱ)解:设PQ=x,
在Rt△PMQ中,tan∠PMQ= =1.4,
∴MQ=
在Rt△PNQ中,tan∠PNQ= =3.3,
∴NQ=
∵MN=MQ﹣NQ=40,即 =40,
解得:x≈97
【解析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网