题目内容
【题目】如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.
(1)求证:△DAC∽△DBA;
(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;
(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用AB为⊙O的直径和AD是⊙O的切线,判断出∠ACD=∠BAD=90°,即可得出结论;
(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠ECA,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;
(3)先求出tan∠ABD的值,进而求出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.
(1)证明:∵AB是⊙O直径,
∴∠ACD=∠ACB=90°,
∵AD是⊙O的切线,
∴∠BAD=90°,
∴∠ACD=∠BAD=90°,
∵∠D=∠D,
∴△DAC∽△DBA.
(2)证明:∵EA,EC是⊙O的切线,
∴AE=CE,
∴∠DAC=∠ECA,
∵∠ACD=90°,
∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,
∴∠D=∠DCE,
∴DE=CE,
∴AD=AE+DE=CE+CE=2CE,
∴CE=AD.
(3)解:在Rt△ABD中,AD=6,AB=3,
∴tan∠ABD==2,
如图,过点G作GH⊥BD于H,
∴tan∠ABD==2,
∴GH=2BH,
∵点F是直径AB下方半圆的中点,
∴∠BCF=45°,
∴∠CGH=45°,
∴CH=GH=2BH,
∴BC=BH+CH=3BH,
在Rt△ABC中,tan∠ABC==2,
∴AC=2BC,
根据勾股定理得AC2+BC2=AB2,
∴4BC2+BC2=9,
∴BC=,
∴3BH=,
∴BH=,
∴GH=2BH=,
在Rt△CHG中,∠BCF=45°,
∴CG=GH=.