ÌâÄ¿ÄÚÈÝ
£¨2013•»Æ¸Ô£©Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ËıßÐÎABCDÊÇÌÝÐΣ¬ÆäÖÐA£¨6£¬0£©£¬B£¨3£¬
£©£¬C£¨1£¬
£©£¬¶¯µãP´ÓµãOÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòµãAÔ˶¯£¬¶¯µãQҲͬʱ´ÓµãBÑØB¡úC¡úOµÄÏß·ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòµãOÔ˶¯£¬µ±µãPµ½´ïAµãʱ£¬µãQÒ²Ëæֹ֮ͣ£¬ÉèµãP£¬QÔ˶¯µÄʱ¼äΪt£¨Ã룩£®
£¨1£©Çó¾¹ýA£¬B£¬CÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãQÔÚCO±ßÉÏÔ˶¯Ê±£¬Çó¡÷OPQµÄÃæ»ýSÓëʱ¼ätµÄº¯Êý¹Øϵʽ£»
£¨3£©ÒÔO£¬P£¬Q¶¥µãµÄÈý½ÇÐÎÄܹ¹³ÉÖ±½ÇÈý½ÇÐÎÂð£¿ÈôÄÜ£¬ÇëÇó³ötµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©¾¹ýA£¬B£¬CÈýµãµÄÅ×ÎïÏߵĶԳÆÖá¡¢Ö±ÏßOBºÍPQÄܹ»½»ÓÚÒ»µãÂð£¿ÈôÄÜ£¬ÇëÇó³ö´ËʱtµÄÖµ£¨»ò·¶Î§£©£¬Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£©£®
3 |
3 |
£¨1£©Çó¾¹ýA£¬B£¬CÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãQÔÚCO±ßÉÏÔ˶¯Ê±£¬Çó¡÷OPQµÄÃæ»ýSÓëʱ¼ätµÄº¯Êý¹Øϵʽ£»
£¨3£©ÒÔO£¬P£¬Q¶¥µãµÄÈý½ÇÐÎÄܹ¹³ÉÖ±½ÇÈý½ÇÐÎÂð£¿ÈôÄÜ£¬ÇëÇó³ötµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©¾¹ýA£¬B£¬CÈýµãµÄÅ×ÎïÏߵĶԳÆÖá¡¢Ö±ÏßOBºÍPQÄܹ»½»ÓÚÒ»µãÂð£¿ÈôÄÜ£¬ÇëÇó³ö´ËʱtµÄÖµ£¨»ò·¶Î§£©£¬Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£©£®
·ÖÎö£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽ¼´¿É£»
£¨2£©¸ù¾ÝÒÑÖªµÃ³ö¡÷OPQµÄ¸ß£¬½ø¶øÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬µÃ³öÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬µÃ³ö¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ»
£¨4£©Ê×ÏÈÇó³öÅ×ÎïÏ߶ԳÆÖáÒÔ¼°OBÖ±Ïß½âÎöʽºÍPMµÄ½âÎöʽ£¬µÃ³ö
£¨1-t£©¡Á
=3-t-2t£¬ºã³ÉÁ¢£¬¼´0¡Üt¡Ü2ʱ£¬P£¬M£¬Q×ÜÔÚÒ»ÌõÖ±ÏßÉÏ£¬ÔÙÀûÓÃ2£¼t¡Ü3ʱ£¬Çó³ötµÄÖµ£¬¸ù¾ÝtµÄÈ¡Öµ·¶Î§µÃ³ö´ð°¸£®
£¨2£©¸ù¾ÝÒÑÖªµÃ³ö¡÷OPQµÄ¸ß£¬½ø¶øÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½Çó³ö¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬µÃ³öÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬µÃ³ö¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ»
£¨4£©Ê×ÏÈÇó³öÅ×ÎïÏ߶ԳÆÖáÒÔ¼°OBÖ±Ïß½âÎöʽºÍPMµÄ½âÎöʽ£¬µÃ³ö
3 |
3 |
½â´ð£º½â£º£¨1£©ÉèËùÇóÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬°ÑA£¨6£¬0£©£¬B£¨3£¬
£©£¬C£¨1£¬
£©Èýµã×ø±ê´úÈëµÃ£º
£¬
½âµÃ£º
£¬
¼´ËùÇóÅ×ÎïÏß½âÎöʽΪ£ºy=-
x2+
x+
£»
£¨2£©Èçͼ1£¬ÒÀ¾ÝÌâÒâµÃ³ö£ºOC=CB=2£¬¡ÏCOA=60¡ã£¬
¡àµ±¶¯µãQÔ˶¯µ½OC±ßʱ£¬OQ=4-t£¬
¡à¡÷OPQµÄ¸ßΪ£ºOQ¡Ásin60¡ã=£¨4-t£©¡Á
£¬
ÓÖ¡ßOP=2t£¬
¡àS=
¡Á2t¡Á£¨4-t£©¡Á
=-
£¨t2-4t£©£¨2¡Üt¡Ü3£©£»
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬
µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¬OQ=
£¬
PQ=
=
£¬
¡ß¡ÏPOQ£¼¡ÏPOC=60¡ã£¬
¡àÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOPQ=90¡ã£¬Èçͼ2£¬ÔòOP2+PQ2=QO2£¬¼´4t2+3+£¨3t-3£©2=3+£¨3-t£©2£¬
½âµÃ£ºt1=1£¬t2=0£¨ÉáÈ¥£©£¬
Èô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOQP=90¡ã£¬Èçͼ£¬3£¬ÔòOQ2+PQ2=PO2£¬¼´£¨3-t£©2+6+£¨3t-3£©2=4t2£¬
½âµÃ£ºt=2£¬
µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¾4£¬
¡ÏPOQ=¡ÏCOP=60¡ã£¬
OQ£¼OC=2£¬
¹Ê¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ¬
×ÛÉÏËùÊö£¬µ±t=1»òt=2ʱ£¬¡÷OPQΪֱ½ÇÈý½ÇÐΣ»
£¨4£©ÓÉ£¨1£©¿ÉÖª£¬Å×ÎïÏßy=-
x2+
x+
=-
£¨x-2£©2+
£¬
Æä¶Ô³ÆÖáΪx=2£¬
ÓÖ¡ßOBµÄÖ±Ïß·½³ÌΪy=
x£¬
¡àÅ×ÎïÏ߶ԳÆÖáÓëOB½»µãΪM£¨2£¬
£©£¬
ÓÖ¡ßP£¨2t£¬0£©
Éè¹ýP£¬MµÄÖ±Ïß½âÎöʽΪ£ºy=kx+b£¬
¡à
£¬
½âµÃ£º
£¬
¼´Ö±ÏßPMµÄ½âÎöʽΪ£ºy=
x-
£¬
¼´
£¨1-t£©y=x-2t£¬
ÓÖ0¡Üt¡Ü2ʱ£¬Q£¨3-t£¬
£©£¬´úÈëÉÏʽ£¬µÃ£º
£¨1-t£©¡Á
=3-t-2t£¬ºã³ÉÁ¢£¬
¼´0¡Üt¡Ü2ʱ£¬P£¬M£¬Q×ÜÔÚÒ»ÌõÖ±ÏßÉÏ£¬
¼´MÔÚÖ±ÏßPQÉÏ£»
µ±2£¼t¡Ü3ʱ£¬OQ=4-t£¬¡ÏQOP=60¡ã£¬
¡àQ£¨
£¬
£©£¬
´úÈëÉÏʽµÃ£º
¡Á
£¨1-t£©=
-2t£¬
½âµÃ£ºt=2»òt=
£¨¾ù²»ºÏÌâÒ⣬ÉáÈ¥£©£®
¡à×ÛÉÏËùÊö£¬¿ÉÖª¹ýµãA¡¢B¡¢CÈýµãµÄÅ×ÎïÏߵĶԳÆÖáOBºÍPQÄܹ»½»ÓÚÒ»µã£¬´Ëʱ0¡Üt¡Ü2£®
3 |
3 |
|
½âµÃ£º
|
¼´ËùÇóÅ×ÎïÏß½âÎöʽΪ£ºy=-
| ||
15 |
4
| ||
15 |
4
| ||
5 |
£¨2£©Èçͼ1£¬ÒÀ¾ÝÌâÒâµÃ³ö£ºOC=CB=2£¬¡ÏCOA=60¡ã£¬
¡àµ±¶¯µãQÔ˶¯µ½OC±ßʱ£¬OQ=4-t£¬
¡à¡÷OPQµÄ¸ßΪ£ºOQ¡Ásin60¡ã=£¨4-t£©¡Á
| ||
2 |
ÓÖ¡ßOP=2t£¬
¡àS=
1 |
2 |
| ||
2 |
| ||
2 |
£¨3£©¸ù¾ÝÌâÒâµÃ³ö£º0¡Üt¡Ü3£¬
µ±0¡Üt¡Ü2ʱ£¬QÔÚBC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¬OQ=
3+(3-t)2 |
PQ=
3+[2t-(3-t)]2 |
3+(3t-3)2 |
¡ß¡ÏPOQ£¼¡ÏPOC=60¡ã£¬
¡àÈô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOPQ=90¡ã£¬Èçͼ2£¬ÔòOP2+PQ2=QO2£¬¼´4t2+3+£¨3t-3£©2=3+£¨3-t£©2£¬
½âµÃ£ºt1=1£¬t2=0£¨ÉáÈ¥£©£¬
Èô¡÷OPQΪֱ½ÇÈý½ÇÐΣ¬Ö»ÄÜÊÇ¡ÏOPQ=90¡ã»ò¡ÏOQP=90¡ã£¬
Èô¡ÏOQP=90¡ã£¬Èçͼ£¬3£¬ÔòOQ2+PQ2=PO2£¬¼´£¨3-t£©2+6+£¨3t-3£©2=4t2£¬
½âµÃ£ºt=2£¬
µ±2£¼t¡Ü3ʱ£¬QÔÚOC±ßÉÏÔ˶¯£¬´ËʱOP=2t£¾4£¬
¡ÏPOQ=¡ÏCOP=60¡ã£¬
OQ£¼OC=2£¬
¹Ê¡÷OPQ²»¿ÉÄÜΪֱ½ÇÈý½ÇÐΣ¬
×ÛÉÏËùÊö£¬µ±t=1»òt=2ʱ£¬¡÷OPQΪֱ½ÇÈý½ÇÐΣ»
£¨4£©ÓÉ£¨1£©¿ÉÖª£¬Å×ÎïÏßy=-
| ||
15 |
4
| ||
15 |
4
| ||
5 |
| ||
15 |
16
| ||
15 |
Æä¶Ô³ÆÖáΪx=2£¬
ÓÖ¡ßOBµÄÖ±Ïß·½³ÌΪy=
| ||
3 |
¡àÅ×ÎïÏ߶ԳÆÖáÓëOB½»µãΪM£¨2£¬
2
| ||
3 |
ÓÖ¡ßP£¨2t£¬0£©
Éè¹ýP£¬MµÄÖ±Ïß½âÎöʽΪ£ºy=kx+b£¬
¡à
|
½âµÃ£º
|
¼´Ö±ÏßPMµÄ½âÎöʽΪ£ºy=
| ||
3(1-t) |
2
| ||
3(1-t) |
¼´
3 |
ÓÖ0¡Üt¡Ü2ʱ£¬Q£¨3-t£¬
3 |
3 |
3 |
¼´0¡Üt¡Ü2ʱ£¬P£¬M£¬Q×ÜÔÚÒ»ÌõÖ±ÏßÉÏ£¬
¼´MÔÚÖ±ÏßPQÉÏ£»
µ±2£¼t¡Ü3ʱ£¬OQ=4-t£¬¡ÏQOP=60¡ã£¬
¡àQ£¨
4-t |
2 |
| ||
2 |
´úÈëÉÏʽµÃ£º
| ||
2 |
3 |
4-t |
2 |
½âµÃ£ºt=2»òt=
4 |
3 |
¡à×ÛÉÏËùÊö£¬¿ÉÖª¹ýµãA¡¢B¡¢CÈýµãµÄÅ×ÎïÏߵĶԳÆÖáOBºÍPQÄܹ»½»ÓÚÒ»µã£¬´Ëʱ0¡Üt¡Ü2£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÓ¦ÓÃÒÔ¼°´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽºÍ´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽµÈ֪ʶ£¬ÀûÓ÷ÖÀàÌÖÂÛ˼ÏëµÃ³ötµÄÖµÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿