题目内容
(2013•黄冈)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数,
≈1.73,
≈1.41)
3 |
2 |
分析:先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF-BF即可得出答案.
解答:解:依题意可得:∠AEB=30°,∠ACE=15°,
又∵∠AEB=∠ACE+∠CAE
∴∠CAE=15°,
即△ACE为等腰三角形,
∴AE=CE=100m,
在Rt△AEF中,∠AEF=60°,
∴EF=AEcos60°=50m,AF=AEsin60°=50
m,
在Rt△BEF中,∠BEF=30°,
∴BF=EFtan30°=50×
=
m,
∴AB=AF-BF=50
-
=
≈58(米).
答:塔高AB大约为58米.
又∵∠AEB=∠ACE+∠CAE
∴∠CAE=15°,
即△ACE为等腰三角形,
∴AE=CE=100m,
在Rt△AEF中,∠AEF=60°,
∴EF=AEcos60°=50m,AF=AEsin60°=50
3 |
在Rt△BEF中,∠BEF=30°,
∴BF=EFtan30°=50×
| ||
3 |
50
| ||
3 |
∴AB=AF-BF=50
3 |
50
| ||
3 |
100
| ||
3 |
答:塔高AB大约为58米.
点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.
练习册系列答案
相关题目