题目内容
【题目】已知:等腰三角形ABC的面积为30,AB=AC= 10,则底边BC的长度为_________ m.
【答案】或
【解析】
作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.
作CD⊥AB于D,
则∠ADC=∠BDC=90°,△ABC的面积=ABCD=×10×CD=30,
解得:CD=6,
∴AD==8m;
分两种情况:
①等腰△ABC为锐角三角形时,如图1所示:
BD=ABAD=2m,
∴BC==;
②等腰△ABC为钝角三角形时,如图2所示:
BD=AB+AD=18m,
∴BC==;
综上所述:BC的长为或.
故答案为:或.
练习册系列答案
相关题目