题目内容

【题目】已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)证明:PE=PF;
(3)若PF=13,sinA= ,求EF的长.

【答案】
(1)解:连接OD,

∵直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,

∴OB= OA=4,BC=BD= CD,

∴在Rt△OBD中,BD= =4

∴CD=2BD=8


(2)解:∵PE是⊙O的切线,

∴∠PEO=90°,

∴∠PEF=90°﹣∠AEO,∠PFE=∠AFB=90°﹣∠A,

∵OE=OA,

∴∠A=∠AEO,

∴∠PEF=∠PFE,

∴PE=PF


(3)解:过点P作PG⊥EF于点G,

∴∠PGF=∠ABF=90°,

∵∠PFG=∠AFB,

∴∠FPG=∠A,

∴FG=PFsinA=13× =5,

∵PE=PF,

∴EF=2FG=10


【解析】(1)首先连接OD,由直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,可求得OB的长,又由勾股定理,可求得BD的长,然后由垂径定理,求得CD的长;(2)由PE是⊙O的切线,易证得∠PEF=90°﹣∠AEO,∠PFE=∠AFB=90°﹣∠A,继而可证得∠PEF=∠PFE,根据等角对等边的性质,可得PE=PF;(3)首先过点P作PG⊥EF于点G,易得∠FPG=∠A,即可得FG=PFsinA=13× =5,又由等腰三角形的性质,求得答案.
【考点精析】关于本题考查的线段垂直平分线的性质和勾股定理的概念,需要了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网