题目内容
(2013•怀化)如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16cm2,求AC的长.
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16cm2,求AC的长.
分析:(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;
(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.
(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.
解答:(1)证明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四边形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE与△BGF中,
,
∴△ADE≌△BGF(ASA);
(2)解:过点C作CG⊥AB于点H,
∵正方形DEFG的面积为16cm2,
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CH⊥AB,
∴AH=
AB=
×12=6cm,
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=
=
=4
cm,
∵CH⊥AB,DE⊥AB,
∴CH∥DE,
∴△ADE∽△ACH,
∴
=
,
=
,
解得AC=6
cm.
∴∠B=∠A=45°,
∵四边形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE与△BGF中,
|
∴△ADE≌△BGF(ASA);
(2)解:过点C作CG⊥AB于点H,
∵正方形DEFG的面积为16cm2,
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CH⊥AB,
∴AH=
1 |
2 |
1 |
2 |
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=
AE2+DE2 |
42+42 |
2 |
∵CH⊥AB,DE⊥AB,
∴CH∥DE,
∴△ADE∽△ACH,
∴
AE |
AH |
AD |
AC |
4 |
6 |
4
| ||
AC |
解得AC=6
2 |
点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.
练习册系列答案
相关题目