题目内容
【题目】“8字”的性质及应用:
(1)如图①,AD、BC相交于点O,得到一个“8字”ABCD,求证:∠A+∠B=∠C+∠D.
(2)图②中共有多少个“8字”?
(3)如图②,∠ABC和∠ADC的平分线相交于点E,利用(1)中的结论证明∠E=(∠A+∠C).
【答案】(1)证明见解析;(2)3;(3)证明见解析.
【解析】
(1)根据三角形内角和定理和对顶角相等解答即可;
(2)根据题中给出的“8字”的概念解答即可;
(3)根据角平分线的定义和三角形的外角的性质解答即可.
(1)证明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,
又∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:图②中有:ABCD、BECD、ABED,3个“8字”;
(3)证明:∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠CDE=∠ADE=∠ADC,
∵∠A+∠ABE=∠E+∠ADE,∠C+∠CDE=∠E+∠CBE,
∴∠E=(∠A+∠C).
练习册系列答案
相关题目
【题目】某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.
学生读书数量统计表
阅读量/本 | 学生人数 |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接写出m、a、b的值;
(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?