题目内容
【题目】一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E通过时的两个特殊位置:当铁棒位于AB位置时,它与墙面OG所成的角∠ABO51°18′;当铁棒底端B向上滑动1m(即BD1m)到达CD位置时,它与墙面OG所成的角∠CDO60°,求铁棒的长.(参考数据:sin51°18′0.780,cos51°18′0.625,tan51°18′1.248)
【答案】该铁棒的长为8 m.
【解析】分析:在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD-OB即可求解.
详解:设铁棒的长为x m.
在Rt△AOB中,cos∠ABO ,
∴OBAB·cos∠ABOx·cos60°.
在Rt△COD中,cos∠CDO,
∴ODCD·cos∠CDOx·cos51°18′.
∵BDODOB,
∴.
解这个方程,得x8.
答:该铁棒的长为8 m.
【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为;②足球飞行路线的对称轴是直线;③足球被踢出时落地;④足球被踢出时,距离地面的高度是.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【题目】在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
请根据以上信息解答下列问题:
(1)填空:m= ______ ,n= ______ ;
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.
【题目】树叶有关的问题
如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:
表1 A树、B树、C树树叶的长宽比统计表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
A树树叶的长宽比 | 4.0 | 4.9 | 5.2 | 4.1 | 5.7 | 8.5 | 7.9 | 6.3 | 7.7 | 7.9 |
B树树叶的长宽比 | 2.5 | 2.4 | 2.2 | 2.3 | 2.0 | 1.9 | 2.3 | 2.0 | 1.9 | 2.0 |
C树树叶的长宽比 | 1.1 | 1.2 | 1.2 | 0.9 | 1.0 | 1.0 | 1.1 | 0.9 | 1.0 | 1.3 |
表1 A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表
平均数 | 中位数 | 众数 | 方差 | |
A树树叶的长宽比 | 6.2 | 6.0 | 7.9 | 2.5 |
B树树叶的长宽比 | 2.2 | 0.38 | ||
C树树叶的长宽比 | 1.1 | 1.1 | 1.0 | 0.02 |
A树、B树、C树树叶的长随变化的情况
解决下列问题:
(1)将表2补充完整;
(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”
②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”
请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;
(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。