题目内容
【题目】如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为( )
A. B. C. D.
【答案】D
【解析】
试题延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.
试题解析:延长AE交DF于G,如图:
∵AB=5,AE=3,BE=4,
∴△ABE是直角三角形,
∴同理可得△DFC是直角三角形,
可得△AGD是直角三角形,
∴∠ABE+∠BAE=∠GAE+∠BAE,
∴∠GAD=∠EBA,
同理可得:∠ADG=∠BAE,
在△AGD和△BAE中,
,
∴△AGD≌△BAE(ASA),
∴AG=BE=4,DG=AE=3,
∴EG=4﹣3=1,
同理可得:GF=1,
∴EF=.
故选D.
练习册系列答案
相关题目