题目内容
定理:若x1、x2是关于x的一元二次方程x2+mx+n=0的两实根,则有x1+x2=-m,x1x2=n.请用这一定理解决问题:已知x1、x2是关于x的一元二次方程x2-2(k+1)x+k2+2=0的两实根,且(x1+1)(x2+1)=8,求k的值.
由已知定理得:x1x2=k2+2,x1+x2=2(k+1).
∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8.
即k2+2k-3=0,
解得:k1=-3,k2=1.
又∵△=4(k+1)2-4(k2+2)≥0.
解得:k≥
,故k=-3舍去.
∴k的值为1.
∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8.
即k2+2k-3=0,
解得:k1=-3,k2=1.
又∵△=4(k+1)2-4(k2+2)≥0.
解得:k≥
1 |
2 |
∴k的值为1.
练习册系列答案
相关题目