题目内容

【题目】如图1,在ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;

(2)如图2,若BE的延长线交AC于点F,且BFAC,垂足为F,BAC=45°,原题设其它条件不变.求证:AEF≌△BCF.

【答案】(1)根据等腰三角形三线合一的性质可得BAE=EAC,然后利用“边角边”证明ABE和ACE全等,再根据全等三角形对应边相等证明即可。

(2)先判定ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出EAF=CBF,然后利用“角边角”证明AEF和BCF全等即可。

【解析】

(1)根据等腰三角形三线合一的性质可得BAE=EAC,然后利用“边角边”证明ABE和ACE全等,再根据全等三角形对应边相等证明即可。

(2)先判定ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出EAF=CBF,然后利用“角边角”证明AEF和BCF全等即可。

证明:(1)AB=AC,D是BC的中点,∴∠BAE=EAC。

ABE和ACE中,

∴△ABE≌△ACE(SAS)。BE=CE。

(2)∵∠BAC=45°,BFAF,∴△ABF为等腰直角三角形。AF=BF。

AB=AC,点D是BC的中点,ADBC。∴∠EAF+C=90°。

BFAC,∴∠CBF+C=90°。∴∠EAF=CBF。

AEF和BCF中,

∴△AEF≌△BCF(ASA)。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网