题目内容
【题目】直线与轴相交于点,与轴相交于点.
(1)求直线与坐标轴围成的面积;
(2)在轴上一动点,使是等腰三角形;请直接写出所有点的坐标,并求出如图所示时点的坐标;
(3)直线与直线相交于点,与轴相交于点;点是直线上一点,若的面积是的面积的两倍,求点的坐标.
【答案】(1);(2)所有P点的坐标,点P的坐标;(3)或.
【解析】
(1)先求出OA,OB的长度,然后利用面积公式即可求解;
(2)是等腰三角形,分三种情况讨论:若时;若时;若时,图中给出的情况是时,设,利用勾股定理即可求出x的值,从而可确定P的坐标;
(3)先求出点C的坐标,然后根据面积之间的关系求出D的纵坐标,然后将纵坐标代入直线CD中即可求出横坐标.
(1)当时,,
, ;
当时,,
, ;
∴的面积;
(2)是等腰三角形,分三种情况讨论:
若时,有,此时;
若时,
此时或;
若时,
设,则,
由,得:
∴
此时;
(3)由以及得,所以,
∵的面积是的面积的两倍,
∴点的纵坐标为或,
把代入得,
把代入得
因此或.
【题目】为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
七年级 | 0 | 1 | 0 | a | 7 | 1 |
八年级 | 1 | 0 | 0 | 7 | b | 2 |
分析数据:
平均数 | 众数 | 中位数 | |
七年级 | 78 | 75 | |
八年级 | 78 | 80.5 |
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.