题目内容

精英家教网已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=6
2
.求证:
(1)△CDB∽△CAD;
(2)CD是⊙O的切线.
分析:(1)根据已知及相似三角形的判定方法进行分析即可;
(2)连接OD,求出OD2+CD2=OC2,根据勾股定理的逆定理得出∠ODC=90°,得出结论.
解答:证明:(1)∵AB=6,BC=AB,DC=6
2

∴AC=12,BC=6.
DC
AC
=
BC
DC
=
2
2

∵∠C=∠C,
∴△CDB∽△CAD.

(2)(证法一):连接OD,则有OD=3,精英家教网
∵OC=9,DC=6
2

∵DC2+OD2=(6
2
2+32=81=92
∴DC2+OD2=OC2
∴∠ODC=90°,
∴CD⊥OD.
又∵OD是半径,
∴CD是⊙O的切线.
(证法二):连接OD,则有OD=OA,
∴∠A=∠ADO.
∵△CDB∽△CAD,
∴∠CDB=∠A.
∴∠CDB=∠ADO.
∵AB是⊙O的直径,
∴∠ADB=90°.
即∠ADO+∠ODB=90°.
∴∠CDB+∠ODB=90°.
即∠ODC=90°.
∴CD⊥OD.
∵OD是半径,
∴CD是⊙O的切线.
点评:综合考查相似三角形的判定及勾股定理逆定理的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网