ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¾¹ýÈýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬ËüµÄ¶¥µãΪM£¬ÓÖÕý±ÈÀýº¯Êýy=kxµÄͼÏóÓë¶þ´Îº¯ÊýÏཻÓÚÁ½µãD¡¢E£¬ÇÒPÊÇÏ߶ÎDEµÄÖе㣮
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çóº¯Êý¶¥µãMµÄ×ø±ê£»
£¨2£©ÒÑÖªµãE£¨2£¬3£©£¬ÇÒ¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýֵʱ£¬ÊÔ¸ù¾Ýº¯ÊýͼÏóÇó³ö·ûºÏÌõ¼þµÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ÇóËıßÐÎPCMBµÄÃæ»ýΪ
£®
£¨²Î¿¼¹«Ê½£ºÒÑÖªÁ½µãD£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòÏ߶ÎDEµÄÖеã×ø±êΪ(
£¬
)£©
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çóº¯Êý¶¥µãMµÄ×ø±ê£»
£¨2£©ÒÑÖªµãE£¨2£¬3£©£¬ÇÒ¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýֵʱ£¬ÊÔ¸ù¾Ýº¯ÊýͼÏóÇó³ö·ûºÏÌõ¼þµÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ÇóËıßÐÎPCMBµÄÃæ»ýΪ
93 |
16 |
£¨²Î¿¼¹«Ê½£ºÒÑÖªÁ½µãD£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòÏ߶ÎDEµÄÖеã×ø±êΪ(
x1+x2 |
2 |
y1+y2 |
2 |
·ÖÎö£º£¨1£©ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¾¹ýÈýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬¿ÉÇó¶þ´Îº¯Êý½âÎöʽ£¬²¢È·¶¨¶¥µã×ø±ê£»
£¨2£©°ÑE£¨2£¬3£©´úÈëy=kxÖеÃÕý±ÈÀýº¯Êý½âÎöʽ£¬ÁªÁ¢Õý±ÈÀýº¯Êý½âÎöʽºÍÅ×ÎïÏß½âÎöʽ£¬¿ÉµÃDµã×ø±ê£¬¸ù¾ÝͼÏóÇó³ö·ûºÏÌõ¼þµÄxµÄ·¶Î§£»
£¨3£©ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µãD£¬EµÄ×ø±ê£¬¸ù¾ÝÖеã×ø±ê¹«Ê½Çó³öPµã×ø±ê£¬ÀûÓø·¨±íʾËıßÐÎPCMBµÄÃæ»ý£¬½ø¶øµÃ³öËıßÐÎPCMBµÄÃæ»ýΪ
ʱ£¬kµÄÖµ£®
£¨2£©°ÑE£¨2£¬3£©´úÈëy=kxÖеÃÕý±ÈÀýº¯Êý½âÎöʽ£¬ÁªÁ¢Õý±ÈÀýº¯Êý½âÎöʽºÍÅ×ÎïÏß½âÎöʽ£¬¿ÉµÃDµã×ø±ê£¬¸ù¾ÝͼÏóÇó³ö·ûºÏÌõ¼þµÄxµÄ·¶Î§£»
£¨3£©ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µãD£¬EµÄ×ø±ê£¬¸ù¾ÝÖеã×ø±ê¹«Ê½Çó³öPµã×ø±ê£¬ÀûÓø·¨±íʾËıßÐÎPCMBµÄÃæ»ý£¬½ø¶øµÃ³öËıßÐÎPCMBµÄÃæ»ýΪ
93 |
16 |
½â´ð£º½â£º£¨1£©ÓÉy=ax2+bx+c£¬ÔòµÃ£º
£¬
½âµÃ£º
£¬
¹Êº¯Êý½âÎöʽΪ£ºy=-x2+2x+3=-£¨x-1£© 2+4£¬
µÃ³öµãM£¨1£¬4£©£®
£¨2£©ÓɵãE£¨2£¬3£©ÔÚÕý±ÈÀýº¯Êýy=kxµÄͼÏóÉϵãº
3=2k£¬
k=
£¬¹Êy=
x£¬
ÓÉ
£¬
½âµÃ£»
£¬
¹ÊDµã×ø±êΪ£º£¨-
£¬-
£©£¬
ÓÉͼÏó¿ÉÖª£¬µ±¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇ-
£¼x£¼2£®
£¨3£©
£¬
½âµÃ£ºµãD£¬E×ø±êΪD£¨
£¬
•k£©£¬
E£¨
£¬
•k£©£¬
ÔòµãP×ø±êΪP£¨
£¬
•k£©ÓÉ0£¼k£¼2£¬ÖªµãPÔÚµÚÒ»ÏóÏÞ£¬
ÓɵãB£¨3£¬0£©£¬C£¨0£¬3£©£¬M£¨1£¬4£©£¬
µÃSËıßÐÎPOMB=
+
¡Á2¡Á4=
£¬
ÔòSËıßÐÎPCMB=
-S¡÷OPC-S¡÷OPB=
-
¡Á3¡Á
-
¡Á3¡Á
•k£¬
ÕûÀíµÃ³ö£ºSËıßÐÎPCMB=
£¨k-
£©2+
£¬
ÒªÇóµ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ËıßÐÎPCMBµÄÃæ»ýΪ
£¬
µÃ³ö
=
£¨k-
£©2+
£¬
¼´0=
£¨k-
£©2£¬
¹Êµ±k=
ʱ£¬ËıßÐÎPCMBµÄÃæ»ýΪ
£®
|
½âµÃ£º
|
¹Êº¯Êý½âÎöʽΪ£ºy=-x2+2x+3=-£¨x-1£© 2+4£¬
µÃ³öµãM£¨1£¬4£©£®
£¨2£©ÓɵãE£¨2£¬3£©ÔÚÕý±ÈÀýº¯Êýy=kxµÄͼÏóÉϵãº
3=2k£¬
k=
3 |
2 |
3 |
2 |
ÓÉ
|
½âµÃ£»
|
¹ÊDµã×ø±êΪ£º£¨-
3 |
2 |
9 |
4 |
ÓÉͼÏó¿ÉÖª£¬µ±¶þ´Îº¯ÊýµÄº¯ÊýÖµ´óÓÚÕý±ÈÀýº¯Êýʱ£¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇ-
3 |
2 |
£¨3£©
|
½âµÃ£ºµãD£¬E×ø±êΪD£¨
2-k-
| ||
2 |
2-k-
| ||
2 |
E£¨
2-k+
| ||
2 |
2-k+
| ||
2 |
ÔòµãP×ø±êΪP£¨
2-k |
2 |
2-k |
2 |
ÓɵãB£¨3£¬0£©£¬C£¨0£¬3£©£¬M£¨1£¬4£©£¬
µÃSËıßÐÎPOMB=
1¡Á(3+4) |
2 |
1 |
2 |
15 |
2 |
ÔòSËıßÐÎPCMB=
15 |
2 |
15 |
2 |
1 |
2 |
2-k |
2 |
1 |
2 |
2-k |
2 |
ÕûÀíµÃ³ö£ºSËıßÐÎPCMB=
3 |
4 |
1 |
2 |
93 |
16 |
ÒªÇóµ±kΪºÎֵʱÇÒ0£¼k£¼2£¬ËıßÐÎPCMBµÄÃæ»ýΪ
93 |
16 |
µÃ³ö
93 |
16 |
3 |
4 |
1 |
2 |
93 |
16 |
¼´0=
3 |
4 |
1 |
2 |
¹Êµ±k=
1 |
2 |
93 |
16 |
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ËıßÐÎÃæ»ýÔËË㣬ѧ»áÓÃÁ½¸öº¯Êý½»µãºá×ø±ê±íʾÁ½¸öº¯ÊýÖµµÄ´óС¹Øϵ£¬²¢¶Ô¶þ´Îº¯Êý½øÐÐÔËÓÃÊǽâÌâÖص㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿