题目内容

【题目】如图,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分线BEAC的延长线于点E.

(1)求∠CBE的度数;

(2)过点DDFBE,交AC的延长线于点F,求∠F的度数.

【答案】(1) 65°;(2) 25°.

【解析】

(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;

(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.

1)∵在RtABC中,∠ACB=90°,A=40°,

∴∠ABC=90°﹣A=50°,

∴∠CBD=130°.

BE是∠CBD的平分线,

∴∠CBE=CBD=65°;

(2)∵∠ACB=90°,CBE=65°,

∴∠CEB=90°﹣65°=25°.

DFBE,

∴∠F=CEB=25°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网