题目内容
【题目】如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O,BE=CD。
(1)△ABC是等腰三角形吗?为什么?
(2)点O在∠A的平分线上吗?为什么?
【答案】证明见解析.
【解析】
试题分析:(1)先利用HL证明Rt△BCD与Rt△CBE全等,然后根据全等三角形对应角相等可得∠ABC=∠ACB,再根据等角对等边的性质可得AB=AC,所以△ABC是等腰三角形;
(2)根据(1)中Rt△BCD≌Rt△CBE,然后利用全等三角形对应边相等可得BD=CE,对应角相等可得∠BCE=∠CBD,然后利用等角对等边可得BO=CO,相减可得OD=OE,再根据到角的两边距离相等的点在角的平分线上即可证明.
试题解析:(1)△ABC是等腰三角形
理由如下:∵BD、CE是△ABC的高,∴△BCD与△CBE是直角三角形,在Rt△BCD与Rt△CBE中,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.
(2)点O在∠A的平分线上.
理由如下:∵Rt△BCD≌Rt△CBE,∴BD=CE,∠BCE=∠CBD,∴BO=CO,
∴BD-BO=CE-CO,即OD=OE,∵BD、CE是△ABC的高,
∴点O在∠A的平分线上(到角的两边距离相等的点在角的平分线上).
【题目】某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额a(元)范围 | 200≤a<400 | 400≤a<500 | 500≤a<700 | 700≤a<900 | … |
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为450元的商品,则消费金额为元,获得的优惠额为450×(1-80%)+30=120元,设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价。
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?