题目内容
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,CD=14,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为______.
由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=12,则AC=BC=6
.
同理可求得:AO=OC=6.
在Rt△AOD1中,OA=6,OD1=CD1-OC=8,
由勾股定理得:AD1=10.
故答案为:10.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=12,则AC=BC=6
2 |
同理可求得:AO=OC=6.
在Rt△AOD1中,OA=6,OD1=CD1-OC=8,
由勾股定理得:AD1=10.
故答案为:10.
练习册系列答案
相关题目