题目内容

【题目】如图,直线l1y=x-4分别与x轴,y轴交于AB两点,与直线l2交于点C-2m).点D是直线l2y轴的交点,将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合.
1)求直线l2的解析式;
2)已知点En-2)是直线l1上一点,将直线l2沿x轴向右平移.在平移过程中,当直线l2与线段BE有交点时,求平移距离d的取值范围.

【答案】1)直线l2的解析式为y=4x+3;(2≤d≤

【解析】

1)根据平移的方向和距离即可得到A80),D03),再根据待定系数法即可得到直线l2的解析式;

2)根据一次函数图象上点的坐标特征,即可得到E4-2),再根据y=x-4中,令x=0,则y=-4,可得B0-4),依据直线l2与线段BE有交点,即可得到平移距离d的取值范围.

1)∵将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合,

∴点Ay8个单位,点Dx3个单位,

A80),D03),

把点C-2m)代入l1y=x-4,可得

m=-1-4=-5

C-2-5),

设直线l2的解析式为y=kx+b

D03),C-2-5),代入可得

,解得

∴直线l2的解析式为y=4x+3

2)把En-2)代入直线l1y=x-4,可得

-2=n-4

解得n=4

E4-2),

y=x-4中,令x=0,则y=-4

B0-4),

设直线l2沿x轴向右平移后的解析式为y=4x-n+3

当平移后的直线经过点B0-4)时,-4=40-n+3

解得n=

当平移后的直线经过点E4-2)时,-2=44-n+3

解得n=

∵直线l2与线段BE有交点,

∴平移距离d的取值范围为:≤d≤

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网