题目内容
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为( )
A. 193 B. 194 C. 195 D. 196
【答案】C
【解析】
根据长方形的面积公式可得S关于m的函数解析式,由树与墙CD,AD的距离分别是15m和6m求出m的取值范围,再结合二次函数的性质可得答案.
∵AB=m米,
∴BC=(28-m)米.
则S=ABBC=m(28-m)=-m2+28m.
即S=-m2+28m(0<m<28).
由题意可知,,
解得6≤m≤13.
∵在6≤m≤13内,S随m的增大而增大,
∴当m=13时,S最大值=195,
即花园面积的最大值为195m2.
故选C.
练习册系列答案
相关题目
【题目】为了估计某地区供暖期间空气质量情况,某同学在20天里做了如下记录:
其中ω<50时空气质量为优,50≤ω≤100时空气质量为良,100<ω≤150时空气质量为轻度污染.若按供暖期125天计算,请你估计该地区在供暖期间空气质量达到良以上(含良)的天数为( )
污染指数(ω) | 40 | 60 | 80 | 100 | 120 | 140 |
天数(天) | 3 | 2 | 3 | 4 | 5 | 3 |
A. 75B. 65C. 85D. 100