题目内容

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).

(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈ ,cos22° ,tan22

【答案】
(1)解:如图,

过点E作EM⊥AB,垂足为M.

设AB为x.

Rt△ABF中,∠AFB=45°,

∴BF=AB=x,

∴BC=BF+FC=x+25,

在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,

tan22°=

=

解得:x=20.

即教学楼的高20m.


(2)解:由(1)可得ME=BC=x+25=20+25=45.

在Rt△AME中,cos22°=

∴AE=

即A、E之间的距离约为48m


【解析】(1)首先构造直角三角形△AEM,利用tan22°= ,求出即可;(2)利用Rt△AME中,cos22°= ,求出AE即可.此题主要考查了解直角三角形的应用,根据已知得出tan22°= 是解题关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网