题目内容

【题目】已知在矩形ABCD中,∠ADC的平分线DEBC边所在的直线交于点E,点P是线段DE上一定点(其中EPPD

1)如图1,若点FCD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PDPF分别交射线DA于点HG

①求证:PG=PF

②探究:DFDGDP之间有怎样的数量关系,并证明你的结论.

2)拓展:如图2,若点FCD的延长线上(不与D重合),过点PPGPF,交射线DA于点G,你认为(1)中DEDGDP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

【答案】(1)①证明见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DGDF=DP

【解析】试题分析:(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;

②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;

试题解析:(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG-HG=DG-DF可得DG-DF=DP.

(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,

∴∠PDF=∠ADP=45°,

∴△HPD为等腰直角三角形,

∴∠DHP=∠PDF=45°,

在△HPG和△DPF中,

∴△HPG≌△DPF(ASA),

∴PG=PF;

②结论:DG+DF=DP,

由①知,△HPD为等腰直角三角形,△HPG≌△DPF,

∴HD=DP,HG=DF,

∴HD=HG+DG=DF+DG,

∴DG+DF=DP;

(2)不成立,数量关系式应为:DG-DF=DP,

如图,过点P作PH⊥PD交射线DA于点H,

∵PF⊥PG,

∴∠GPF=∠HPD=90°,

∴∠GPH=∠FPD,

∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,

∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,

∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,

∴∠GHP=∠FDP=180°-45°=135°,

在△HPG和△DPF中,

∴△HPG≌△DPF,

∴HG=DF,

∴DH=DG-HG=DG-DF,

∴DG-DF=DP.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网