题目内容

【题目】如图,在ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=B.

(1)求证:AC·CD=CP·BP;

(2)AB=10,BC=12,当PDAB时,求BP的长.

【答案】(1)证明见解析;(2)BP=.

【解析】(2)易证∠APD=B=C,从而可证到△ABP∽△PCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;

(2)由PDAB可得∠APD=BAP,即可得到∠BAP=C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.

解:(1)AB=AC,∴∠B=C.

∵∠APD=B,∴∠APD=B=C.

∵∠APC=BAP+B,APC=APD+DPC,

∴∠BAP=DPC,

∴△ABP∽△PCD,

ABCD=CPBP.

AB=AC,

ACCD=CPBP;

(2)PDAB,∴∠APD=BAP.

∵∠APD=C,∴∠BAP=C.

∵∠B=B,

∴△BAP∽△BCA,

AB=10,BC=12,

BP=

“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到∠BAP=C进而得到△BAP∽△BCA是解决第(2)小题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网