题目内容
【题目】阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为 .
(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.
【答案】(1)真命题;(2); (3)见解析
【解析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;
(2)分第三条边是斜边或直角边两种情况,再根据勾股定理求出第三条边长;
(3)由勾股定理得,AC2+CB2=AB2,由△ABD是等腰直角三角形得AB2=2AD2,结合已知条件可得结论.
(1)设等边三角形的边长为a,
∵a2+a2=2a2,
∴等边三角形一定是奇异三角形,
∴“等边三角形一定是奇异三角形”,是真命题;
(2)分两种情况:
①当为斜边时,第三边长=,
②当2和分别为直角边时,第三边长为<,故不存在,
因此,第三边长为:;
(3)∵△ACB是直角三角形,且∠ACB=90°,
∴AC2+CB2=AB2,
∵△ADB是等腰直角三角形,
∴AB2=2AD2,
∴AC2 =AB2-CB2,
∴AC2 =2AD2-CB2,
∵AE=AD,CE=CB,
∴AC2+CB2=2AD2-CB2+CB2=2AD2=2CE2.
∴是奇异三角形.
练习册系列答案
相关题目