题目内容
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根据正方形性质和翻折的性质,得到AB=AF,∠B=∠AFG=90°,利用HL定理即可判定①正确;求出DE、CE的长,从而得到EF,设BG=x,然后表示出GF,再求出CG、EG的长,然后在Rt△CEG中,利用勾股定理列式求出x的值,从而得到BG=CG,判定②正确;再根据等边对等角的性质得到∠GCF=∠GFC,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠GCF+∠GFC=∠AGB+∠AGF,从而求出∠GCF=∠AGB,根据同位角相等,两直线平行即可证明AG∥CF,判定③正确;先求出△CEG的面积,再根据等高的三角形的面积的比等于底边的比求出△FGC的面积为,判定④错误.
解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=∠D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL),
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF,
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,
∵CG=6-x,CE=4,EG=x+2
∴(6-x)2+42=(x+2)2
解得:x=3,
∴BG=GF=CG=3,
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG,
∵∠BGF=∠CFG+∠FCG,
又∵∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF,
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG,
∴AG∥CF,
∴③正确;
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴==,
∵S△CEG=×3×4=6,
∴S△FGC=×6=,
∴④错误;
正确的结论有3个.
故选C.