题目内容
【题目】如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.
(1)求抛物线的解析式;
(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;
(3)抛物线上是否存在点Q,使得S△AOC=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣x;(2)P的坐标为(,﹣)或(4 ,6)或(,﹣)或(0,0);(3)Q(3,0)或(﹣2,15).
【解析】
(1)把A与B坐标代入抛物线解析式求出a与b的值,即可确定出解析式;
(2)设P坐标为(x,x2-x),表示出AD与PD,由相似分两种情况得比例求出x的值,即可确定出P坐标;
(3)存在,求出已知三角形AOC边OA上的高h,过O作OM⊥OA,截取OM=h,与y轴交于点N,分别确定出M与N坐标,利用待定系数法求出直线MN解析式,与抛物线解析式联立求出Q坐标即可.
(1)把A(,﹣3)和点B(3,0)代入抛物线得:,
解得:a=,b=﹣,
则抛物线解析式为y=x2﹣x;
(2)当P在直线AD上方时,
设P坐标为(x, x2﹣x),则有AD=x﹣,PD=x2﹣x+3,
当△OCA∽△ADP时,,即,
整理得:3x2﹣9x+18=2x﹣6,即3x2﹣11x+24=0,
解得:x=,即x=或x=(舍去),
此时P(,﹣);
当△OCA∽△PDA时,,即,
整理得: x2﹣9x+6=6x﹣6,即x2﹣5x+12=0,
解得:x=,即x=4或(舍去),
此时P(4,6);
当点P(0,0)时,也满足△OCA∽△PDA;
当P在直线AD下方时,同理可得:P的坐标为(,﹣),
综上,P的坐标为(,﹣)或(4,6)或(,﹣)或(0,0);
(3)在Rt△AOC中,OC=3,AC=,
根据勾股定理得:OA=2,
∵OCAC=OAh,
∴h=,
∵S△AOC=S△AOQ=,
∴△AOQ边OA上的高为,
过O作OM⊥OA,截取OM=,过M作MN∥OA,交y轴于点N,如图所示:
在Rt△OMN中,ON=2OM=9,即N(0,9),
过M作MH⊥x轴,
在Rt△OMH中,MH=OM=,OH=OM=,即M(,),
设直线MN解析式为y=kx+9,
把M坐标代入得: =k+9,即k=﹣,即y=﹣x+9,
联立得:,
解得:或,即Q(3,0)或(﹣2,15),
则抛物线上存在点Q,使得S△AOC=S△AOQ,此时点Q的坐标为(3,0)或(﹣2,15).