题目内容
【题目】(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
【答案】(1)在四边形BCFG中,∠GFC=360°-90°-65°-(90°+25°)=90°
则GF⊥OC
(2)如图,作FM∥GH交EH与M,则有平行四边形FGHM,
∴FM=GH=2.6m,∠EFM=25°
∵FG∥EH,GF⊥OC
∴EH⊥OC
在Rt△EFM中:
EF=FM·cos25°≈2.6×0.91=2.4m
【解析】
试题(1)根据 四边形是矩形, 得出,即可得出答案.
(2)根据矩形的判定得出,再利用解直角三角形的知识得出的长.
试题解析:(1)证明:CD与FG交于点M,
∵,四边形ABCD是矩形,
∴
∴GF⊥CO;
(2)作GN⊥EH于点N,
∴四边形ENGF是矩形;
【题目】为了了解某校学生的身高状况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表:
组别 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
已知女生身高在A组的有8人,根据图表中提供的信息,回答下列问题:
(1)男生身高的中位数落在 组(填组别字母序号);
(2)在样本中,身高在150≤x<155之间的人数共有 人,身高人数最多的在 组(填组别序号);
(3)已知该校共有男生400人、女生420人,请估计身高不足160cm的学生约有多少人?