题目内容
【题目】如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由。
【答案】△BEF是直角三角形,理由见解析
【解析】
因为正方形的四条边相等,边长为12,由E为DC的中点,得出DE和EC的长,AF=3DF,得出AF和DF的长,从而在Rt△ABF中、Rt△BCE中和Rt△DEF中,分别由勾股定理求得BF、BE和EF的长,得到BE2+EF2=BF2,再由勾股定理逆定理证得△BEF是直角三角形.
解:△BEF是直角三角形,理由如下:
∵四边形ABCD是正方形,
∴∠A=∠C=∠D=90°
∵点E是CD的中点,
∴DE=CE=CD=6.
∵AF=3DF,
∴DF=AD=3
∴AF=3DF=9.
在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,
在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,
在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,
∵BE2+EF2=180+45=225,BF2=225,
∴BE2+EF2=BF2
∴△BEF是直角三角形.
练习册系列答案
相关题目