题目内容
【题目】在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是 ;
(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
【答案】(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;
(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
(1)设m=x,n﹣1=y,
∵mn﹣m=6,
∴m(n﹣1)=6,
∴xy=6,
∴
∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
故答案为:;
(2)∴点P(x,y)到点A(0,1),
∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
∴x2+(y﹣1)2=(y+1)2,
∴
(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
∴线段MN的中点为Q的纵坐标为
∴
∴x2﹣4kx﹣4b=0,
∴x1+x2=4k,x1x2=﹣4b,
∴
∴
∴
∴点Q到x轴的最短距离为1.
【题目】已知关于x的方程.
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.
【题目】我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
(1)根据图示填写如表:
班级 | 中位数(分) | 众数(分) |
九(1) |
| 85 |
九(2) | 80 |
|
(2)请你计算九(1)和九(2)班的平均成绩各是多少分。
(3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
(4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?