题目内容
【题目】两个相似三角形的面积比为4:9,那么它们对应中线的比为 .
【答案】2:3
【解析】试题分析:相似三角形的面积之比等于相似比的平方.
【题目】如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC; ②AD+AB=AC.
【题目】若△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC=______.
【题目】关于二次函数y=ax2+bx+c的图象有下列命题:
①当c=0时,函数的图象经过原点;
②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;
③函数图象最高点的纵坐标是;
④当b=0时,函数的图象关于y轴对称.
其中正确命题的个数是( )
A.1个 B.2个 C.3个 D.4个
【题目】某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.
【题目】若x2﹣y2=12,x+y=6,则x﹣y=__.
【题目】矩形ABCD中,∠DBA=60°,把△ABD绕点B逆时针旋转使得点A落在BD上,点A对称点为点A1,点D对称点为点D1,A1 D1与BC交于点E,连接D1C.
(1)求证:EC=EA1;
(2)求证:点D1、C、D在同一直线上.
【题目】如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是( )
A.d>h B.d<h C.d=h D.无法确定
【题目】在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.
(1)求这个梯子的顶端距地面有多高?
(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?