题目内容
【题目】已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.
【答案】DB=cm
【解析】试题分析:由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.
试题解析:∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE,∠AEC=∠DEB=90°,
∵∠B=∠ACD=30°,
在Rt△ACE中,AC=2AE=4cm,
∴CE==2(cm),
∴DE=2cm,
在Rt△BDE中,∠B=30°,
∴BD=2DE=4cm.
∴DB的长为4cm.
练习册系列答案
相关题目