搜索
题目内容
一次函数
的图象不经过
A.第一象限
B.第二象限
C.第三象限
D.第四象限
试题答案
相关练习册答案
D
∵1>0,2>0,
∴一次函数
的图象经过一、二、三象限,即不经过第四象限.
故选D
练习册系列答案
孟建平竞赛培优教材系列答案
启文引路系列答案
南方新中考系列答案
知识与能力训练系列答案
名校作业课时精练系列答案
六月冲刺系列答案
导学全程练创优训练系列答案
课时同步导练系列答案
夺分王系列答案
助学读本系列答案
相关题目
为了发展旅游经济,我市某风景区对门票采用灵活的售票方法吸引游客,门票的定价为每人50元,,非节日打a折售票,节假日按团队人数分段定价售票,即m人一下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人的部分的游客打b折售票,设某旅游团人数为x人,非节假日购票款为y
(元),节假日购票款为y
(元)。y
、y
与x之间的函数图像如图所示
(1)观察图像可知a=
,b=
,m=
(2)直接写出y
, y
与x之间的函数解析式
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团到该景区旅游,共付门票款1900元,A、B两个团队合计50人,求A、B两个团队各有多少人?
如图,在平面直角坐标系xOy中,一次函数
与x轴、y轴分别相交于点A和点B,直线
经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.
(1)求△ABO的面积;
(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。
(10分)已知
与
成正比例,且
时,
.
(1)求
与
的函数关系式;
(2)当
时,求
的值;
(3)将所得函数图象平移,使它过点(2, -1).求平移后直线的解析式.
为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:
小题1:李明从家出发到出现故障时的速度为
米/分钟;
小题2:李明修车用时
分钟;
小题3:求线段BC所对应的函数关系式(不要求写出自变量的取值范围).
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式予以支援.下图是两水库的蓄水量y(万米
3
)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:
(1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?
(3)求直线AD的函数解析式.
如图1,在等腰梯形
ABCO
中,
AB
∥
CO
,
E
是
AO
的中点,过点
E
作
EF
∥
OC
交
BC
于
F
,
AO
=4,
OC
=6,∠
AOC
=60°.现把梯形
ABCO
放置在平面直角坐标系中,使点
O
与原点重合,
OC
在
x
轴正半轴上,点
A
,
B
在第一象限内.
(1)求点
E
的坐标及线段
AB
的长;
(2)点
P
为线段
EF
上的一个动点,过点
P
作
PM
⊥
EF
交
OC
于点
M
,过
M
作
MN
∥
AO
交折线
ABC
于点
N
,连结
PN
,设
PE
=
x
.△
PMN
的面积为
S
.
①求
S
关于
x
的函数关系式;
②△
PMN
的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形
EDGH
(
H
在
EF
上,
DG
落在
OC
上,∠
EDG
=90°,且
DG
=3,
HG
∥
BC
.现在开始操作:固定等腰梯形
ABCO
,将直角梯形
EDGH
以每秒1个单位的速度沿
OC
方向向右移动,直到点
D
与点
C
重合时停止(如图2).设运动时间为
t
秒,运动后的直角梯形为
E
′
D
′
G
′
H
′(如图3);试探究:在运动过程中,等腰梯
ABCO
与直角梯形
E
′
D
′
G
′
H
′重合部分的面积
y
与时间
t
的函数关系式.
一次函数y=-2x+4图象与y轴的交点坐标是( )
A.(0, 4)
B. (4, 0)
C.(2, 0)
D.(0, 2 )
已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )
A k>0,b>0 B k>0,b<0
C k<0,b>0 D k<0,b<0
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总