题目内容
如图,已知△ABC中,AD为高,且AB+CD=AC+BD,求证:AB=AC.
证明:∵三角形ABD和ACD是直角三角形,
∴AB2-BD2=AC2-CD2①,
又由AB+CD=AC+BD得:
AB-BD=AC-CD②,
由①②得:
AB+BD=AC+CD③,
联立公式②③得:
AB=AC.
∴AB2-BD2=AC2-CD2①,
又由AB+CD=AC+BD得:
AB-BD=AC-CD②,
由①②得:
AB+BD=AC+CD③,
联立公式②③得:
AB=AC.
练习册系列答案
相关题目