题目内容
【题目】在直角坐标系中,我们将圆心坐标和半径均为整数的圆称为“整圆”.如图所示,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为“整圆”的点P个数是_____个.
【答案】6.
【解析】
根据直线的解析式求得OB=4,进而求得OA=12,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM=PA,然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.
∵直线l:y=kx+4与x轴、y轴分别交于A、B,
∴B(0,4),
∴OB=4,
在Rt△AOB中,∠OAB=30°,
∴OA=OB=×4=12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,
∴PM=PA,
设P(x,0),
∴PA=12﹣x,
∴⊙P的半径PM=PA=6﹣x,
∵x为整数,PM为整数,
∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故答案是:6.
练习册系列答案
相关题目
【题目】“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了九年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时) | 6 | 7 | 8 | 9 | 10 |
人数 | 5 | 8 | 12 | 15 | 10 |
(1)根据上述表格补全下面的条形统计图;
(2)写出这50名学生读书时间的众数、中位数、平均数;
(3)若该校有1000名学生,求最近一周的读书时间不少于7小时的人数?