题目内容
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是( )
A.70° | B.40° | C.50° | D.20° |
连接BC,OB,
∵PA、PB是⊙O的切线,A、B为切点,
∴∠OAP=∠OBP=90°;
而∠P=40°(已知),
∴∠AOB=180°-∠P=140°,
∴∠BOC=40°,
∴∠BAC=
∠BOC=20°(同弧所对的圆周角是所对的圆心角的一半),
故选D.
∵PA、PB是⊙O的切线,A、B为切点,
∴∠OAP=∠OBP=90°;
而∠P=40°(已知),
∴∠AOB=180°-∠P=140°,
∴∠BOC=40°,
∴∠BAC=
1 |
2 |
故选D.
练习册系列答案
相关题目