题目内容
【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.
(1)在图中标出点D,并画出该四边形的另两条边;
(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.
【答案】(1)答案见解析;(2)答案见解析.
【解析】
(1)点D是点B关于直线AC的对称点,根据对称的性质确定点D后,连接AD和CD,即可得到四边形的另两条边.
(2)将A,B,C,D四点向下平移5个单位,得到A1,B1,C1,D1,再依次连接A1,B1,C1,D1,即可得到四边形A1B1C1D1.连接DB1与AC相交的交点即为所求.
(1)如图所示,四边形ABCD即为所求.
(2)如图所示,四边形A1B1C1D1即为所求,点P位置如图所示.
练习册系列答案
相关题目