题目内容
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.
(1)设点A的坐标为(4,4)则点C的坐标为 ;
(2)若点D的坐标为(4,n).
①求反比例函数y=的表达式;
②求经过C,D两点的直线所对应的函数解析式;
(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
【答案】(1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+3;(3)m=3时,S△OEF最大,最大值为.
【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
(1)∵点C是OA的中点,A(4,4),O(0,0),
∴C,
∴C(2,2);
故答案为(2,2);
(2)①∵AD=3,D(4,n),
∴A(4,n+3),
∵点C是OA的中点,
∴C(2,),
∵点C,D(4,n)在双曲线上,
∴,
∴,
∴反比例函数解析式为;
②由①知,n=1,
∴C(2,2),D(4,1),
设直线CD的解析式为y=ax+b,
∴,
∴,
∴直线CD的解析式为y=﹣x+3;
(3)如图,由(2)知,直线CD的解析式为y=﹣x+3,
设点E(m,﹣m+3),
由(2)知,C(2,2),D(4,1),
∴2<m<4,
∵EF∥y轴交双曲线于F,
∴F(m,),
∴EF=﹣m+3﹣,
∴S△OEF=(﹣m+3﹣)×m=(﹣m2+3m﹣4)=﹣(m﹣3)2+,
∵2<m<4,
∴m=3时,S△OEF最大,最大值为