题目内容
【题目】如图,点是边长为2的菱形对角线上的一个动点,点,分别是,边上的中点,则的最小值是( )
A.1B.2C.D.4
【答案】B
【解析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=2.
解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点,
∴M′是AD的中点,
又∵N是BC边上的中点,
∴AM′∥BN,AM′=BN,
∴四边形ABNM′是平行四边形,
∴M′N=AB=2,
∴MP+NP=M′N=2,
即MP+NP的最小值为2,
故选:B.
练习册系列答案
相关题目