题目内容
计算:(π﹣3.14)0﹣2﹣|﹣3|=_____.
如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是( )
A. B. 1 C. D.
在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2,乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,把球上的数字记为x,再从乙袋中任意摸出一个小球,把球上的数字记为y,以此确定点M的坐标(x,y).
(1)请你用画树状图或列表的方法(只选其中一种),写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=﹣2x的图象上的概率.
如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
(1)化简求值:,其中x是一元二次方程x(x﹣1)=2x﹣2的解.
(2)解不等式组:,并求其整数解的和.
九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x个班,根据题意列出的方程是( )
A. x(x﹣1)=28 B. x(x﹣1)=28 C. 2x(x﹣1)=28 D. x(x+1)=28
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
如图,AB∥CD,那么( )
A. ∠BAD与∠B互补 B. ∠1=∠2 C. ∠BAD与∠D互补 D. ∠BCD与∠D互补
如图,在△ABC中,∠ACB=90°,CD为△ABC的角平分线.
(1)求作:线段CD的垂直平分线EF,分别交AC,BC于点E,F,垂足为O(要求尺规作图,保留作图痕迹,不写作法);
(2)求证:△COE≌△COF.