ÌâÄ¿ÄÚÈÝ
ÔĶÁÀí
Èôp¡¢q¡¢mΪÕûÊý£¬ÇÒÈý´Î·½³Ìx3+px2+qx+m=0ÓÐÕûÊý½âc£¬Ôò½«c´úÈë·½³ÌµÃ£ºc3+pc2+qc+m=0£¬ÒÆÏîµÃ£ºm=-c3-pc2-qc£¬¼´ÓУºm=c¡Á£¨-c2-pc-q£©£¬ÓÉÓÚ-c2-pc-qÓëc¼°m¶¼ÊÇÕûÊý£¬ËùÒÔcÊÇmµÄÒòÊý£®ÉÏÊö¹ý³Ì˵Ã÷£ºÕûÊýϵÊý·½³Ìx3+px2+qx+m=0µÄÕûÊý½âÖ»¿ÉÄÜÊÇmµÄÒòÊý£®ÀýÈ磺·½³Ìx3+4x2+3x-2=0ÖÐ-2µÄÒòÊýΪ¡À1ºÍ¡À2£¬½«ËüÃÇ·Ö±ð´úÈë·½³Ìx3+4x2+3x-2=0½øÐÐÑéÖ¤µÃ£ºx=-2ÊǸ÷½³ÌµÄÕûÊý½â£¬-1£¬1£¬2²»ÊÇ·½³ÌµÄÕûÊý½â£®
½â¾öÎÊÌ⣺
£¨1£©¸ù¾ÝÉÏÃæµÄѧϰ£¬ÇëÄãÈ·¶¨·½³Ìx3+x2+5x+7=0µÄÕûÊý½âÖ»¿ÉÄÜÊÇÄļ¸¸öÕûÊý£¿
£¨2£©·½³Ìx3-2x2-4x+3=0ÊÇ·ñÓÐÕûÊý½â£¿ÈôÓУ¬ÇëÇó³öÆäÕûÊý½â£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
Èôp¡¢q¡¢mΪÕûÊý£¬ÇÒÈý´Î·½³Ìx3+px2+qx+m=0ÓÐÕûÊý½âc£¬Ôò½«c´úÈë·½³ÌµÃ£ºc3+pc2+qc+m=0£¬ÒÆÏîµÃ£ºm=-c3-pc2-qc£¬¼´ÓУºm=c¡Á£¨-c2-pc-q£©£¬ÓÉÓÚ-c2-pc-qÓëc¼°m¶¼ÊÇÕûÊý£¬ËùÒÔcÊÇmµÄÒòÊý£®ÉÏÊö¹ý³Ì˵Ã÷£ºÕûÊýϵÊý·½³Ìx3+px2+qx+m=0µÄÕûÊý½âÖ»¿ÉÄÜÊÇmµÄÒòÊý£®ÀýÈ磺·½³Ìx3+4x2+3x-2=0ÖÐ-2µÄÒòÊýΪ¡À1ºÍ¡À2£¬½«ËüÃÇ·Ö±ð´úÈë·½³Ìx3+4x2+3x-2=0½øÐÐÑéÖ¤µÃ£ºx=-2ÊǸ÷½³ÌµÄÕûÊý½â£¬-1£¬1£¬2²»ÊÇ·½³ÌµÄÕûÊý½â£®
½â¾öÎÊÌ⣺
£¨1£©¸ù¾ÝÉÏÃæµÄѧϰ£¬ÇëÄãÈ·¶¨·½³Ìx3+x2+5x+7=0µÄÕûÊý½âÖ»¿ÉÄÜÊÇÄļ¸¸öÕûÊý£¿
£¨2£©·½³Ìx3-2x2-4x+3=0ÊÇ·ñÓÐÕûÊý½â£¿ÈôÓУ¬ÇëÇó³öÆäÕûÊý½â£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉÔĶÁÀí½â¿ÉÖª£º¸Ã·½³ÌÈç¹ûÓÐÕûÊý½â£¬ËüÖ»¿ÉÄÜÊÇ7µÄÒòÊý£¬¶ø7µÄÒòÊýÖ»ÓУº1£¬-1£¬7£¬-7ÕâËĸöÊý£®
£¨2£©¸Ã·½³ÌÓÐÕûÊý½â£®
·½³ÌµÄÕûÊý½âÖ»¿ÉÄÜÊÇ3µÄÒòÊý£¬¼´1£¬-1£¬3£¬-3£¬½«ËüÃÇ·Ö±ð´úÈë·½³Ìx3-2x2-4x+3=0
½øÐÐÑéÖ¤µÃ£ºx=3ÊǸ÷½³ÌµÄÕûÊý½â£®
£¨2£©¸Ã·½³ÌÓÐÕûÊý½â£®
·½³ÌµÄÕûÊý½âÖ»¿ÉÄÜÊÇ3µÄÒòÊý£¬¼´1£¬-1£¬3£¬-3£¬½«ËüÃÇ·Ö±ð´úÈë·½³Ìx3-2x2-4x+3=0
½øÐÐÑéÖ¤µÃ£ºx=3ÊǸ÷½³ÌµÄÕûÊý½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿