题目内容
如图,在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,且四边形EFGH的面积为6cm2,则梯形ABCD的面积为 cm2.
18
试题分析:根据平行线分线段成比例定理可以得出EH=,FG=,进而利用梯形的面积公式得出梯形ABCD的面积.
解:∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,
∴2EH=AD+FG,2FG=EH+BC,
∴EH=,FG=,
∵四边形EFGH的面积为6cm2,
∴(EH+FG)h=6,
∴四边形ADEH的面积和四边形FBCG的面积和为:
(EH+AD)h+(BC+FG)h=12,
则梯形ABCD的面积为:18.
故答案为:18.
点评:此题主要考查了相似多边形的性质,根据已知得出EH=,FG=,是解决问题的关键.
练习册系列答案
相关题目