题目内容

【题目】如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为(  )

A.14
B.16
C.17
D.18

【答案】D
【解析】解:∵四边形ABCD是矩形,
∴∠ABC=90°,CD=AB=6,BC=AD=8,
∴AC===10,
∴BP=AC=5,
∵P是矩形ABCD的对角线AC的中点,E是AD的中点,
∴AE=AD=4,PE是△ACD的中位线,
∴PE=CD=3,
∴四边形ABPE的周长=AB+BP+PE+AE=6+5+3+4=18;
故选:D.
由矩形的性质得出∠ABC=90°,CD=AB=6,BC=AD=8,由勾股定理求出AC,由直角三角形斜边上的中线性质得出BP,证明PE是△ACD的中位线,由三角形中位线定理得出PE=CD=3,四边形ABPE的周长=AB+BP+PE+AE,即可得出结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网