题目内容
【题目】关于x的方程(k-1)x2+2kx+2=0
(1)求证:无论k为何值,方程总有实数根。
(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值。若不能,请说明理由。
【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.
【解析】
试题分析:(1) 本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.
试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,
x=有一个解;
②当k-1≠0即k≠1时,方程为一元二次方程,
△=(2k)-4×2(k-1)=4k-8k+8=4(k-1) +4>0
方程有两不等根
综合①②得不论k为何值,方程总有实根
(2)∵x +x =,x x =
∴S=++ x1+x2
=
=
=
=
=2k-2=2,
解得k=2,
∴当k=2时,S的值为2
∴S的值能为2,此时k的值为2.
练习册系列答案
相关题目