题目内容
【题目】(11分)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=﹣x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).
【答案】(1)y=x2﹣2x﹣3;(2)存在,P(2,﹣3);(3)△AEF是等腰直角三角形.理由见解析;(4)△AEF是等腰直角三角形.
【解析】试题分析:(1)依题意联立方程组求出a,b的值后可求出函数表达式;
(2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标;
(3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形;
(4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立.
试题解析:(1)根据题意,得,
解得,
∴抛物线对应的函数表达式为y=x22x3;
(2)存在.连接AP,CP,
如下图所示:
在y=x22x3中,令x=0,得y=3.
令y=0,得x22x3=0,
∴x1=1,x2=3.
∴A(1,0),B(3,0),C(0,3).
又y=(x1)24,
∴顶点M(1,4),
容易求得直线CM的表达式是y=x3.
在y=x3中,令y=0,得x=3.
∴N(3,0),
∴AN=2,
在y=x22x3中,令y=3,得x1=0,x2=2.
∴CP=2,
∴AN=CP.
∵AN∥CP,
∴四边形ANCP为平行四边形,此时P(2,3);
(3)△AEF是等腰直角三角形.
理由:在y=x+3中,令x=0,得y=3,令y=0,得x=3.
∴直线y=x+3与坐标轴的交点是D(0,3),B(3,0).
∴OD=OB,
∴∠OBD=45°,
又∵点C(0,3),
∴OB=OC.
∴∠OBC=45°,
由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,
∴∠EAF=90°,且AE=AF.
∴△AEF是等腰直角三角形;
(4)当点E是直线y=x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
【题目】一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:
选手 | 演讲内容 | 演讲能力 | 演讲效果 |
甲 | 85 | 95 | 95 |
乙 | 95 | 85 | 95 |
(1)如果认为这三方面的成绩同等重要,从他们的成绩看,谁能胜出?
(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?