题目内容
3、如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是( )
分析:对四个结论逐一进行论述,说明其对错即可.另外此题中没有给出比例线段,故只能通过两角对应相等,两三角形相似进行证明.
解答:解:①若△ABD∽△CAD,则一定有AD:BD=CD:AD,即AD2=BD•CD,而两三角形只有一对角对应相等,不会得到另外的对应角相等,故选项不正确;
②若△BEG∽△AEB,则一定有BE:EG=AE:BE,即BE2=EG•AE,而两三角形只有一对公共角相等,不会得到另外的对应角相等,故选项不正确;
③∵∠ABD=∠AEC,∠ADB=∠AEC=90°,∴△ABD∽△AEC,∴AE:AC=AB:AD,即AE•AD=AC•AB,故选项正确;
∵根据相交弦定理,可直接得出AG•EG=BG•CG,故选项正确.
故选B.
②若△BEG∽△AEB,则一定有BE:EG=AE:BE,即BE2=EG•AE,而两三角形只有一对公共角相等,不会得到另外的对应角相等,故选项不正确;
③∵∠ABD=∠AEC,∠ADB=∠AEC=90°,∴△ABD∽△AEC,∴AE:AC=AB:AD,即AE•AD=AC•AB,故选项正确;
∵根据相交弦定理,可直接得出AG•EG=BG•CG,故选项正确.
故选B.
点评:本题利用了相似三角形的判定、直径所对的圆周角等于90°、同弧所对的圆周角相等等知识.
练习册系列答案
相关题目